近日,深圳大學(xué)化學(xué)與環(huán)境工程學(xué)院李倍老師在領(lǐng)域頂級(jí)期刊IEEE Transactions on Intelligent Transportation Systems(影響因子7.9,中科院1區(qū),TOP期刊)上發(fā)表了題為“Real-Time Hydrogen Refuelling of the Fuel Cell Electric Vehicle Through the Coupled Transportation Network and Power System”的研究論文。李倍為獨(dú)立第一作者。深圳大學(xué)為第一單位。其他作者包括Jiangchen Li, Nanjing University of Aeronautics and Astronautics, China;Zhixiong Li, Opole University of Technology, Poland;Miguel Angel Sotelo, University of Alcalá, Spain。
HFCEV的加氫仍然是一個(gè)亟待解決的問(wèn)題。本文提出一種基于氫電微網(wǎng)來(lái)生產(chǎn)氫氣,為HFCEV加氫,并提出了不同的策略來(lái)引導(dǎo)HFCEV在交通網(wǎng)絡(luò)與電力系統(tǒng)耦合下的加氫行為。首先,根據(jù)實(shí)際交通網(wǎng)絡(luò)構(gòu)建HFCEV交通流模型。其次,建立實(shí)時(shí)仿真算法。第三,構(gòu)建基于氫氣的微電網(wǎng)為HFCEV加氫。第四,建立IEEE 30節(jié)點(diǎn)電網(wǎng)輸出功率模型。最后,提出通過(guò)交通網(wǎng)絡(luò)與電力網(wǎng)絡(luò)的耦合實(shí)現(xiàn)HFCEV實(shí)時(shí)加氫。耦合結(jié)構(gòu)如圖1,并比較了不同的HFCEV加氫策略(固定價(jià)格、動(dòng)態(tài)價(jià)格、LSTM決策價(jià)格)。結(jié)果表明,在動(dòng)態(tài)價(jià)格下,交通網(wǎng)絡(luò)的擁堵得到改善,等待時(shí)間減少了17.71%,網(wǎng)絡(luò)的時(shí)間損失減少了13.29%。通過(guò)合理的價(jià)格引導(dǎo),車輛會(huì)選擇指定的站點(diǎn)進(jìn)行氫氣加注,并影響交通網(wǎng)絡(luò)車流量的時(shí)空分布。此外,通過(guò)調(diào)整發(fā)電站輸出功率和加氫站輸入功率,可以改善電力系統(tǒng)的電壓條件。
圖1 電網(wǎng)-微網(wǎng)-交通網(wǎng)耦合結(jié)構(gòu)
分析了四種不同的電網(wǎng)耦合交通網(wǎng)結(jié)構(gòu)如下圖2所示:
1) In Case 1, the power station is not considered, only microgrids are considered;
2) In Case 2, the power station is considered, the exporting power of the power station is adjusted based on the selling price, and the selling price is adjusted based on the utility grid voltage; in addition, in microgrid, the hydrogen price is adjusted based on the traffic congestion;
3) In Case 3, the power station is considered, the difference is that in the microgrid, the hydrogen price is adjusted based on the utility grid voltage and the traffic congestion;
4) In Case 4, an LSTM network is adopted to train the relationship between states (voltage, traffic flow) and the price. The hydrogen price is decided based on the smart LSTM network.
此外,在Case 1中3種不同的價(jià)格場(chǎng)景Case 1A, Case 1B, and Case 1C被進(jìn)行比較,包括:
Case 1A:hydrogen price is not considered, and vehicles choose the nearest distance station to refuel hydrogen;
Case 1B:fixed hydrogen price is considered;
Case 1C:dynamic hydrogen price is considered, and the price is dynamically adjusted basedon the traffic congestion. Three different users choosing refuelling station strategies are compared.
圖2 電網(wǎng)耦合交通網(wǎng)的不同場(chǎng)景
結(jié)果:在不同場(chǎng)景下的交通網(wǎng)狀態(tài)如表1所示;電網(wǎng)的電壓偏移情況如下圖所示。
原文鏈接:https://ieeexplore-ieee-org-s.webvpn.szu.edu.cn/document/10557141
李倍曾于2015-2019年在法國(guó)國(guó)家科學(xué)研究中心(CNRS)Femto-st, FCLAB實(shí)驗(yàn)室從事科學(xué)研究。目前擔(dān)任深圳大學(xué)能源科學(xué)與工程系教師。至今以獨(dú)立第一作者發(fā)表SCI/EI英文論文30余篇,獨(dú)立第一作者SCI期刊論文18篇,包括IEEE Transactions on Intelligent Transportation Systems, eTransportation, Applied energy等國(guó)際知名期刊,其中包括一篇ESI高被引論文。